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Flanders Make’s vision on AI
for manufacturing

Flanders Make believes in the value of artifi cial intelligence – strengthened 
by domain knowledge - to enhance products and production systems with 
additional decision supporting and/or developing features to make them 
smarter. However, safety, robustness, reliability, explainability and predic-
tability are very important requirements of any  product or production 
system, and meeting these requirements is a challenging endeavour if we 
want to implement AI-based solutions. In this white paper, we will provide 
specifi c solutions and explain how our product∞ion intelligence approach 
overcomes these challenges to bring real added value to the manufacturing 
industry and provide a viable steppingstone to a circular economy.

Why Product∞ion Intelligence?
We use the infi nity symbol ‘∞’ in this brand new term because we at Flanders Make strongly believe in an 
approach where data and domain knowledge are used to allow product development, production and
aft er-sales service to interact with and learn from each other “infi nitely”.
In this way, a company can continuously improve its product or service and at the same time extend its 
lifespan. Even an individual product, with its unique digital twin, can be further optimised throughout its 
lifecycle thanks to this approach.
Product∞ion intelligence not only gives the company a competitive advantage. It is also a major step
towards a circular economy, where economic development is more balanced with caring for our planet.

Smart products and
production systems

Consumers are increasingly expecting personalised products at the same 
price as mass-produced products. This requires some profound changes 
for our industry, that has been geared towards mass-produced generic 
products at lower costs. Turning products and production systems “smart” 
is a necessity to manufacture these personalised products at the same 
effi  ciency as mass production. This means our machines need more and 
be� er sensors, which gather more data and are able to optimise all kinds 
of processes. In order to do so, the product/production system “brain” 
needs to be able to take complex decisions, which have to be safe, robust, 
reliable, explainable, predictable and then act accordingly by controlling 
the involved actuators like an electric machine to adapt its behaviour.

’ in this brand new term because we at Flanders Make strongly believe in an 
approach where data and domain knowledge are used to allow product development, production and

In this way, a company can continuously improve its product or service and at the same time extend its 
lifespan. Even an individual product, with its unique digital twin, can be further optimised throughout its 
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This process can be used for various improvements and optimisations:
• An electric vehicle can maximise the driving range
• An agricultural machine such as a baler can adapt the plunger movement 

depending on the quality of the crops
• Historical data of changeover times between production runs can

be used as a solid indicator how long a certain changeover can take,
making it possible to sort production runs in a way that minimises
changeover times between them.

• An assembly system can eff ectively inform and advise its operators to 
reduce rework

• A manufacturing system can reconfi gure its operation to customer needs 
and changing value chains.

• ...
In the past, many of these “smart” systems were the result of programmed 
rules that engineers added to products and production systems. These 
rules applied to certain situations and could only be used if those specifi c 
situations arose again. These days, artifi cial intelligence (see inserted text 
box) is increasingly fi nding its way to industrial applications. With AI, we 
can enable machines to gather data, learn from those data and reason if a 
certain context or situation that occurred in the past is also applicable to a 
situation it can perceive now. This allows a machine to handle problem sol-
ving in a very broad range of situations, whereas it would be near impossi-
ble to foresee all these situations and manually teach them to the machine.

Within the Flanders Make industrial 
network, the technology defi nitely 
has been gaining traction over 
recent years. In our recent biennial 
Industry 4.0 report, which gathers 
insights from various companies,
AI and big data have seen a rise to 
the top spot of technologies that 
has a lot of potential for the near 
future. As much as 8 out of 10
companies are already gathering 
data and believe in the potential
of AI for their business.

Download
our Industry 4.0 
report
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Sustainability and a circular economy
Besides enabling us to manufacture personalised products at the cost of 
mass production, the need for a more sustainable and circular economy 
can also greatly benefi t from smarter products and production systems. 
This requires a signifi cant shi�  in how we cope with products over their life-
time, from design up to the recycling of the product. Recycling of products 
should lead to a regenerative economy “giving back” the natural resources 
used in the past. This might become key in Europe, as we have almost no 
natural resources of our own. In order to cover the full value chain,
we would need to develop ecosystems of companies working together to 
achieve circularity. We will discuss this more in-depth in our text box on 
end-to-end engineering. But from a single company’s perspective, a lot can 
be done already with the help of smart and connected products and the 
data that can be captured during the entire lifetime of those products.
Not to mention that smarter products and production systems can
optimise usage of energy and resources, which not only helps cu� ing costs, 
but also off ers obvious advantages to the environment.

Artificial intelligence
Flanders Make adopts the defi nition of AI as stated by the European Commission. An AI-system inclu-
des four specifi c means to (1) perceive its environment through data acquisition, interpret the collected 
structured or unstructured data; (2) reason on the knowledge, or process the information, derived from 
the data; (3) decide on the best action to achieve a given complex goal; (4) act (in the physical or digital 
dimension) based upon the decision through actuators, possibly modifying the environment (see Figure). 

There are two traditional branches typically associated with AI that can be summarised as follows: 

• Machine learning (ML): Refers to collection of methods that can learn patt erns from structured and/
or unstructured data. Classical machine learning methods include logistic regression, random forests 
and support vector machines. Recently, deep learning methods (machine learning methods that utilise 
artifi cial neural networks with many sequential layers, usually trained on large scale datasets) have been 
the dominant approach in addressing real-life problems that involve unstructured data. Unsupervised 
learning (learning patt erns in unlabelled datasets) and reinforcement learning (learning and optimising 
the rewards received from taking decisions) are special forms of machine learning. 

• Machine reasoning: Reasoning and decision making are at the very core of any AI system. Knowledge 
representation (i.e. transforming the data into knowledge) is a central component of machine reasoning, 
where such representations can be either built by symbolic rules or rules learned from the data. Machi-
ne reasoning methods are usually used when potential activities to reach the goal need to be planned 
and scheduled. As there are many ways to come to the best way to achieve the goal, the Machine reaso-
ning methods search for these activities and optimise amongst possible solutions. 

Figure: The EU has defi ned an AI system 
clearly, as a system that perceives its 
environment via sensors, reasons on the 
obtained information to take decisions, in 
order to take actions via actuators in its 
environment.
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End-to-end engineering:
design-operation continuum & crossing
the product-production domain
The products we discuss in this white paper are oft en 
mechatronic systems, used by customers in the manu-
facturing industries. These products are designed ba-
sed on specifi c requirements, produced in dedicated 
factories and then used by customers who are main-
taining them (in-house or by a service provider). When 
the product, the mechatronic system, is connected to 
the product-generating company throughout its life 
cycle and this company has a common and unifi ed 
policy for data acquisition throughout all contributing 
departments of the company, a rich data set becomes 
available. Sharing data between product and produc-
tion can lead to a bett er alignment of the product and 
its production phase. Adding data on maintenance 
and usage at the end customer creates context about 
how and in which circumstances the product is used. 
The latt er data generate insights into how the product 
can be bett er designed with new features and adap-
ted functionalities based on updated requirements. 
For example, when a product is designed for a very 
high operating speed, but the customer is only using 
it at a moderate speed, the product can be optimised 
and production costs can be lowered. The advantages 
for both customer and manufacturer are clear, we can 
decrease the cost of the product, but there’s also an 
advantage for the environment in decreasing needed 
resources and energy during production.

In its updated roadmap Flanders Make will further 
leverage AI and digital twins to realise what we
refer to as end-to-end engineering and realise the 
design-operation continuum. 

It means we are working on methods that:

• Allow to bridge the product (design) and production 
(manufacturing) world. 
» Product quality and behaviour is determined 

during manufacturing
» Performance of the manufacturing systems is 

being determined by the product design
• Exchange (data) information across the life cycle of 

products/production systems:
» Information from the design phase, typically mo-

dels, will be used during the operational phase. 
To this end the design models will be translated 
into a digital twin and used to optimise effi  ciency 
and predict degradation or even machine failure.

» Data obtained from the validation phase of 
a prototype, by building a digital twin of this 
prototype, can be used to validate both the 
design models as well as the prototype. Further, 
during the validation phase, we will use a digital 
twin-based approach by applying load conditions 
that emulate real vehicle component and system 
behaviour extracted from historic data sets and 
system models.

» Data obtained from the validation (and/or ope-
rational phase) will allow to update our design 
models to bett er mimic the variety of real hard-
ware behaviour over a wider range of operating 
conditions such that these digital twin-inspired 
models can lead to improved designs for
future products.

The above use of the digital twin corresponds to
several smaller and bigger loops in the infi nity concept 
as shown in the fi gure1 below.

1 Decision-making loop for the continuous optimization of the production 
and product. (n.d.). Siemens.
https:⁄⁄new.siemens.com⁄global⁄en⁄ markets⁄automotive-manufacturing⁄
digital-twin-performance.html
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Challenges for AI in
the manufacturing industry

Using AI in a consumer-related context, such as an online shop, giving ad-
vice based on shown interest, is quite diff erent from using it in an industrial 
context. Dedicated approaches are needed to create adequate value for 
the industry. The next table describes the main diff erences for several 
aspects. A dedicated approach needs to be developed, as we’ll gradually 
explain further on in this white paper. 

Type Consumer cases Industrial cases

Available data points,
training sets

Many Few

Probability of an event
to occur

High – Medium common Low

Financial impact of
e.g. wrong decisions

Low High

Operational impact Low to no casualties, no to 
low production losses

High, severe casualties,
high production losses

Trained case available Common Frequently untrained case - 
corner cases

Data ownership Available Company-dependent/critical relationships
between customers and suppliers
e.g. OEM & TIER-I

Extrapolation of insights Easy-safe Diffi  cult – out of trained data set –
potentially unsafe
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Challenges of working in the
physical world
In general, when comparing AI in manufacturing to AI 
in consumer-oriented applications, probably one of 
the most important diff erences is that the potential 
economic and safety impact of the actions taken in the 
physical world are very diff erent. 
• Acting in the real world o� en means that physical 

sensors need to be added to products and/or pro-
duction systems. These sensors come at a large cost 
and have to be very reliable. However, the cost of e.g. 
camera sensors is decreasing and these sensors are 
becoming increasingly advanced and more reliable. 
In consumer-oriented AI, the need for accurate sen-
sors is much lower, the error margins are much wider.

• In a manufacturing context the reasoning skills of an 
AI system o� en need to go beyond just extracting 
correlations between data points, the AI system 
needs to recognise causalities as well. Correlation
enables machines to recognise objects on pictures, 
to spot parts of low quality, to cluster load profi les, to 
identify anomalies, to evaluate skill levels of opera-
tors, etc. In a manufacturing context, we need an AI 
system to understand causalities as well. Perceiving 
a certain eff ect and knowing what caused it is vital to 
build a system that can take action to achieve a more 
desirable eff ect.  What further complicates this, is 
that the eff ect of a certain action can manifest itself 
within milliseconds (e.g. when controlling an electric 
machine), but it might as well take days or months 
to notice an eff ect (for example the remaining useful 
lifetime of a product).

Challenges related to
trustworthiness 
Only by capturing, understanding and enabling reaso-
ning on the causalities, mentioned above, trustworthy 
actions defi ned  and/or supported by AI can be taken 
in a product or in a production environment.
The trustworthiness of an AI system should be
assessed using multiple parameters (see inserted
text box on trustworthy AI). Trust requires actions to 
be safe for a nearby operator, the actuator and the
manufacturing system.
Otherwise an operator might get hurt, a drivetrain 
might overload or a production line might halt unplan-
ned. Also cybersecurity is to be considered when dis-
cussing safety, having unauthorised and unpredictable 
actors in the systems is always a risk for the system and 
the humans around it.
Trusted performance is key in a manufacturing 
context, where a wrong decision might lead to huge 
economic losses ranging from tens of thousands up to 
millions of euros due to high scrap levels, lost produc-
tion, damaged machinery because of overloading or 
even physical harm to humans.
Eventually, a trustworthy production system augmen-
ted by AI should lead to acceptance by the humans 
involved. Humans are still and should remain a key
element in the manufacturing sector throughout the 
whole product-production life cycle engineering. 

Trustworthy AI 
The European Commission defi ned trustworthy AI in its High-Level Expert Group on AI (AI HLEG).
Trustworthy AI has three components, which should be met throughout the system’s entire life cycle
and in all sectors (not just the manufacturing context): 

1. It should be lawful, complying with all applicable laws and regulations in view of e.g. GDPR,
data security & ownership.

2. It should be ethical, ensuring adherence to ethical principles and values.

3. It should be robust, both from a technical and social perspective, since, even with good intentions,
AI systems can cause unintentional harm.

Evidently, the third bullet about robustness is the one we focus on most in the industrial context.
Since customer-facing AI oft en processes private information, they need to do this according to the law 
(e.g. GDPR laws) and within ethical boundaries. In the industrial context, an AI needs to be robust,
above all, in order to be considered trustworthy. Robust means it has to perform well, safe for the machine 
and human operator, reliable and explainable in terms of actions taken. In an industrial context,
solutions should also be set up to be cybersecure as an intruder with bad intentions could cause harm to 
all those factors.
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Humans act as:
• Manufacturing experts, when designing products and production sys-

tems (design engineers), verifying the quality level, tuning manufacturing 
se� ings at diff erent manufacturing control levels and deciding on repair & 
maintenance activities 

• Operators in the production systems, operating a machine, executing 
end-of-line tests, moving objects, etc. The experience and skill level of 
these operators o� en makes them experts, even though they will o� en 
not be able to fully document this knowledge formally.

• AI experts, as more and more companies hire data experts, big data 
specialists and AI experts, the shortage of these profi les is only growing 
on the job market.

Challenges in terms of data availability &
computational limitations
Finally, there are challenges that relate to the availability of data as well as 
the computational resources. 
• In manufacturing, data is both big & scarce data. With more and more 

connected and smart systems, high-frequency data fl ows across the
product-production life cycle become available. A single production 
system can deliver information about the design in CAD fi les, information 
about the creation in its task instructions and information on how it
operates in the fi eld through measurements of sensors.
Even in a recycling phase, more data can be gathered. Therefore, large 
quantities of data are available for exploitation. However, as quality levels 
have been increasing and preventive maintenance has been introduced, 
most of these data is collected from a system during nominal operation. 
Obviously, an enterprise wants to avoid faulty operation of any system,
so in general, there is a lot less data that can off er insights when things go 
wrong. This makes it more complicated to predict errors in operations. 

• Computational resources are not always present. AI-based services 
heavily rely on the computational resources off ered by the manufacturing 
system. The decreasing cost of computational resources is what makes AI 
much more readily available in more and more sectors. But industrial ap-
plications o� en have very diff erent requirements than consumer oriented 
AI systems. Constraints like the time to take a decision or the required 
accuracy can make it impossible to implement a cloud-based solution, 
while constraints on the needed computational power can make it impos-
sible to implement solutions at the edge. This means it’s o� en a challenge 
of provisioning a suffi  cient amount of computational resources to satisfy 
both the requirements of the AI service and operational constraints of 
the manufacturing system.

The above-described challenges are not minor, at Flanders Make we are 
tackling them every day with a well proven strategy that relies on domain 
knowledge.
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Enter product∞ion  intelligence

Being experts in manufacturing from both a product and production perspective, Flanders Make was thrilled to
add artifi cial intelligence to its set of engineering tools. However, we needed to tackle all of the above-described 
challenges to make full use of it. At Flanders Make, we strongly believe that the key to solving these issues is
actually hidden in the fact that the behaviour of products and production systems are inherently rooted in physics.
We refer to this as domain knowledge.

Domain knowledge for trustworthy AI 
Domain knowledge of the physics behind these 
systems is typically in place in a manufacturing environ-
ment and has been used/developed over years. 
In general, we identify three types of highly valuable 
domain knowledge:
1. Knowledge included in static and dynamic

representations, such as physics-based models, 
CAD fi les and traditional control loops.

2. Knowledge incorporated in simulation models 
and tools giving access to synthesised/simula-
ted information mainly related to understanding 
dynamic behaviour, these models incorporate state 
space models, diff erential equations, fi nite element 
simulations, etc.

3. Knowledge/expertise obtained via humans,
manufacturing experts or operators that is not 
easily formalised into a physics based model. Senior 
experts with years of experience can label images 
of good/bad product quality, or have developed 
a gut feeling of how to operate a complex system 
that is very hard to model. They also off er creative 
solutions to sometimes complex problems.

This knowledge is increasingly represented in the form 
of a digital twin, which combines it with data coming 
from simulated models as well as from the physical sys-
tem. The unique digital representation of the physical 
asset can be created for each individual physical asset 
(a product or production system). Digital twins are not 
the focus of this white paper, however in the text box 
we do indicate some interesting interactions between 
AI and digital twins.

Digital twins
Reaching an overall defi nition of digital twins 
is a complicated matt er, since the concept 
has been extended, misused and derived a lot 
over the years. However, there is a common 
understanding that there are three important 
elements to any digital twin:

• A digital twin relates to a real “asset”, oft en 
a product or system in our case. We refer to 
it as the physical twin/asset, e.g. an axial fl ux 
machine, a drive train or a vehicle.

• The digital twin and the physical twin
exchange information in at least one direction, 
e.g. data are captured on the physical twin 
and made available to the digital twin.

• For the intended use (i.e. with that use in 
mind) of the digital twin, the digital version 
suffi  ciently mimics some type of behaviour
of this real physical asset. 

The last element is key for us as it means
there is no such thing as THE digital twin,
it means that depending on the intended use 
an alternative digital twin can be envisioned: 
there might be a digital twin for condition
monitoring, another one for validation
and yet another for disassembly, …
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Flanders Make merges domain knowledge in several 
ways and in a diverse intimacy with AI either by using 
it during the design of the AI system (e.g. while training 
the model) and/or the operation of the AI system
(e.g. classical controllers running concurrently with AI).
More particularly, we:
• include hybrid models into the machine learning (e.g. 

(deep) neural networks, long short term memory, etc.) 
and reasoning process either by predefi ned features 
up to the intrusive introduction of models into neural 
networks, these hybrid models are a combination of 
physical and data-driven models.

• combine classical controllers with AI techniques 
such as reinforcement learning, allowing us to either 
retune the classical controller or even further inte-
grate AI into the controller itself to verify its output.

• use simulators in order to simulate both the behavi-
our of the intelligent system with its actuator as well 
as the complexity of the environment the system will 
be exposed to. As such, similators are not only used 
to generate synthesised data, but also allow
AI systems to learn fast and safely from simulations 
before being deployed and before further learning 
in a real environment. 

• use dedicated industry relevant setups where AI 
routines are combined with domain knowledge to 
extract the real behaviour of systems.

• use human experts’ knowledge not only to label 
static data sets, but also to allow AI systems to learn 
from complex decision-making of senior operators/
designers to assist in the learning process. 

• develop virtual sensors, since more information can 
be extracted from existing sensors using more advan-
ced signal processing methods that are now available 
due to progress in available processing power.

While upgrading the performance using these 
techniques, we have also shown how to increase the 
trustworthiness of products and production systems in 
terms of 
• explainability/interpretability allowing for a more 

eff ective interaction and complementary operation 
with AI experts, as well as operators and manufactu-
ring-experts.

• safety of both the installed manufacturing system 
and the humans active in the AI-controlled environ-
ment. Having explainable, and thus expected, results 
is an important factor in the safety of the system. 

This is a big leap from self-learning AI systems that 
make decisions in a black box, off ering very li� le trans-
parency as to why it makes those decisions.
For example, feeding a self-learning system a number
of pictures of pets might teach it to make a distinction
based on whether it contains a cat or a dog, but it 
might as well make a distinction based on the back-
ground being grass or an indoor environment.
This approach is obviously far from adequate in an
industrial context, where an unexplainable result off ers 
li� le confi dence and might have a big impact.
All of the above remains to be complemented by our 
work in “hard core” manufacturing including e.g. robust 
and optimal control, novel hardware design of both 
products and production systems, etc.
We, at Flanders Make, strongly believe that the upgra-
ded performance comes from the co-development of 
key industrial assets like hardware and operators,
as well as intelligence systems.
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Product∞ion intelligence for
Organisational Learning

Product∞ion intelligence is how we envision the manufacturing industry 
overcoming some of the challenges for AI in manufacturing. Further, in 
order to maximise impact across a company we further propose to embed 
this into a framework of organisational learning.

Organisational learning
In every organisation, the process of ‘organisational learning’ (cf. MIT Sloan2) 
is central to growing and thriving. Transferring knowledge within the orga-
nisation is an important step in developing knowledge among employees. 
Creating knowledge, transferring it between the diff erent parts of the orga-
nisation and making sure it will be retained are what makes each company 
more and more specialised in what they do.
The same process happens when dealing with AI-augmented systems. In 
order to create impact and scalability using AI in your organisation, it is not 
suffi  cient to focus only on data, infrastructure and talent. It is additionally 
and even more important:

1. for critical operations to include and start from domain knowledge to set 
up product∞ion intelligence and complement these operations with AI.

2. to facilitate organisational learning with AI and allow the stakeholders in
the organisation to learn from AI. It is therefore important to not only 
train the machine, but also to ensure the organisation learns from the AI.

2 RANSBOTHAM, S., KHODABANDEH, S.,
KIRON, D., CANDELON, F., CHU, M., &
LAFOUNTAIN, B. (2020, October 20). 
Expanding AI’s Impact With 
Organizational Learning.
MIT Sloan Management Review.
h� ps://sloanreview.mit.edu/projects/
expanding-ais-impact-with-organizational-learning/

Organisational 
learning with AI
Organisational learning with 
AI involves a bi-directional 
learning of humans and machi-
nes, not only working together 
but infl uencing each other to 
adapt to contextual changes 
depending on the severity of 
the potential impact on the 
business case. This makes both 
smarter, more relevant and 
more eff ective, for creating a 
robust, explainable and predic-
table impact on the applicati-
ons and business returns. This 
should be integrated in the 
strategy for adoption of the AI 
component of production in-
telligence as it might otherwise 
hinder the scalability of results 
and hence jeopardise the ROI 
of the use of AI. According to 
the MIT Sloan study , organi-
sations that embed organisati-
onal learning have 3 essential 
characteristics: 

1. They facilitate systematic 
and continuous learning 
between humans and 
machines.

2. They develop multiple ways 
for humans and machines 
to interact (e.g. generate 
recommendations and
humans decide to use 
them, human solutions 
with AI evaluation of the 
solution, …).

3. They change to learn
and learn to change.
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Organisational learning in manufacturing
The translation of the organisational learning concept to the manufacturing 
industry is depicted in the following fi gure and a non-exhaustive interpreta-
tion of the interaction areas is formulated.

Human-Machine interaction
• Human prepares the training data for the machine and checks

automated decision-making for robustness reasons and to avoid
major adverse impact

• Machine proposes the actionable insights into the control mechanisms 
that the human can execute and analyses the human solutions to perform 
quality checks and further improve the automated decision making

Machine–Domain knowledge interaction
• Domain knowledge is integrated (e.g. hardcoded) in the algorithm for 

learning and leads to simulated (biased) data for more effi  cient algorithm 
training (e.g. only presenting real cases)

• Machine’s autonomous/automated decision-making leads to new insights 
based on corner cases (nearly unrobust action).
Results of using ML algorithms lead to new domain knowledge
(e.g. friction model parameters)

Human-Domain knowledge interaction
• Humans add new information to extend the domain knowledge  
• Domain knowledge gives insight to human on behaviour of

Cyber-Physical Systems (explainability)

Organisational learning
• Between all these interactions: collaborative multi-directional

organisational learning where humans, machines and domain knowledge 
are all enriched from what they learn on their own and from each other.
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Creating impact with
product∞ion intelligence

Our vision is that product∞ion intelligence embedded 
in a framework of organisational learning will be a key 
driver to increase business impact. This belief stems 
from the fact that we fi nd product∞ion intelligence 
on the crossroads of two technologies that have been 
introduced in the context of Industry 4.0. On the one 
hand, we have the introduction of big data and AI, 
motivating enterprises to gather large amounts of data 
on every process. But o� en, these eff orts fall short of 
also understanding the correlation between the data 
and the real-world results. On the other hand, there’s 
the introduction of physics/model based intelligence, 
simulating how systems perform or should perform in 
the real world. Product∞ion intelligence is where these 
roads meet, combining the data that are gathered
throughout every process with the knowledge that 
stems from simulating a process through models.
By combining both, we can deliver a smarter and 
more trustworthy industrial AI system.
O� en, when AI is integrated in industrial processes, it’s 
used to streamline a specifi c process. This is when an 
organisation discovers and builds AI, without neces-
sarily going beyond that step. While the organisation 
gains from their AI system, it is missing out on much 
larger gains by not taking the next steps as well.
Scaling up AI and eventually performing organisational 
learning with AI are the steps we consider a part of
product∞ion intelligence, the resulting smartness and 
trustworthiness is what the industry needs.

All of the above enables companies to increase their 
probability of becoming an industry leader from 2% to 
73%. First of all, the basics need to be in place and then 
they need to be complemented with sound piloting for 
re-usability and scalability, as well as the cross-domain 
interaction of machines, humans and domain know-
ledge extended with AI. 
Three steps that lead to a high probability of being a 
leader in product∞ion intelligence:
1. Defi ning a sound strategy, creating the necessary 

infrastructure, ensuring qualitative data access, 
recruiting and creating talents, and defi ning
and executing fi rst trials for testing and and
familiarisation.

2. Building product∞ion intelligence based
solutions as a pilot for later re-usability
throughout the factory, for multiple products
or product functionalities.

3. Ensuring interactions between machine, humans 
and domain knowledge as part of the realisation of 
organisational, mutual learning 
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Conclusion

This whitepaper positions product∞ion intelligence and the use of AI as a 
complement to domain knowledge for making more productive mechatro-
nic systems, while at least remaining as safe, robust, reliable, explainable 
and trustworthy as the traditional alternative. Certainly the manufacturing 
industry but also any industry with manufacturing challenges such as food, 
pharma, etc. need the proposed solution to learn from data in a way that 
the requirements of the industrial environments are met and the economic 
impact is under control.
Domain knowledge is the starting point of all actions and this is comple-
mented with one high-quality AI algorithm or a combination of sequentially 
used high-quality algorithms to achieve a be� er solution.
Let’s make a comparison with the restaurant environment. An important
diff erence between a high class restaurant and a normal restaurant is
certainly the chef's domain knowledge of the food. Both chefs might use 
high quality ingredients (such as AI algorithms) but the master chef combi-
nes these ingredients in such a way that taste, colours and fl avours are
perfectly matching, well-balanced, and complementary.

When looking back at the table of challenges we referred to early on in 
this white paper, product∞ion intelligence is how we solve those kinds of 
challenges in  the industry. The challenges arise when using data alone,
the domain knowledge and the use of physics and models allow us to build 
an AI system that is more reliable, predictable and accurate. It’s fi rst of all 
enriched by the experience of operators, the data from the product
development stages, but most of all keeps on evolving by the constant 
stream of new data throughout its life cycle. This makes sure the actions 
taken by an AI system have no unexpected negative impact, mitigates the 
need for a lot of data early on, but still manages to learn from the scarce 
data on faulty operation during usage.
We believe product∞ion intelligence is the way forward for AI in the
manufacturing industry. We will gladly show how in a few deep dives of
practical examples.
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Deep dive into
Flanders Make results

To further illustrate the power of product∞ion intelligence, we have gathered a few use 
cases wherein we use, develop and integrate several types of AI in diff erent ways. 

Product∞ion intelligence with vision 
A major focus of AI has always been on the vision
side of the technology. Image recognition, object 
recognition and navigating with camera’s are fairly new 
technologies that are powered by an AI system reaso-
ning about what it sees and how to interact with what it 
sees. In a manufacturing context, combined with
product∞ion intelligence, vision can truly enrich the 
toolbox of modern machines. 

Bin picking with AI
A common task to tackle in industrial automation is 
bin picking, where a robot and a vision system work 
together to pick objects from all sorts of containers for 
sorting, assembly or other purposes.
To complete this task, correctly recognising the object 
is of course vital. But also determining their orientation 
is o� en important, so the system knows how to pick up 
and place the object at the right place.

Typically, 3D-cameras are used to scan the bin and 
recognise the objects in it, then the robot can pick 
individual objects based on its geometrical features. 
AI algorithms are not commonly used to achieve this. 
However, this approach has a few limitations:
• The technology is quite expensive, a 3D-camera costs 

between € 10.000 and € 15.000 on average.
• The scanning is typically based on pulsed light, which 

is a relatively slow process. It takes a few seconds to 
recognise the objects because of the light pa� ern.

• In the computing algorithms, a fi xed template with 
the desired geometrical features is used for it to 
recognise the fi nal product. This makes it hard for it 
to recognise large variabilities of objects.

• The material of the objects can make ma� ers more 
complicated, like refl ective metals that refl ect the 
pulsed light back to the camera. This can lead to 
unreliable results.

watch video
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Flanders Make developed a diff erent solution consisting of a standard 
2D-camera and AI algorithms that are trained with datasets created from 
the CAD drawing of the part. By adding a light-material interaction model 
and surface textures, we can augment the regular CAD drawing to a
photo-realistically rendered image. With that, it becomes an easy task to
generate many 2D images, with detailed annotations of its contents.
Manually annotating the images is no longer needed, as we know exactly 
which item we are rendering in which orientation, adding this information
to the image has become an automatic process.

By using the CAD models of the industrial parts, we already incorporate
a valuable source of domain knowledge that provides detailed
information for the AI model training. Extending these CAD models with 
diff erent variances, 3D poses, geometrical features, surface pa� erns and 
refl ective pa� erns further improves the accuracy and robustness of the AI 
models. Finally, also integrating diff erent ambient conditions, like various 
backgrounds and lighting, makes the AI models a lot more accurate in
less strictly controlled environments.

Figure 1 - Synthetic data of diff erent industry parts created by 
simulation environment developed at fl anders make
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The results that Flanders Make has achieved (named CAD2POSE)
are quite spectacular and can work robustly in extreme changing
conditions.

Pose estimation of Industrial Compressor elements COBOT Assembly of Compressor elements

The proposed solution has certain advantages over the more conventional 
approach:
• Much lower hardware costs (< € 1.000 for a suitable 2D camera) 
• One-time investment to generate a large amount of training datasets with 

detailed annotations 
• The method can be optimised to work in sub-seconds
• The accuracy can quickly increase (by > 95%) and the robustness can be 

highly improved by injecting more variability in the training data  

Navigation
Computer vision is also used in a diff erent application in manufacturing 
automation, namely as a sensor for perception on automated ground 
vehicles (AGV’s) which are active in an industrial environment. These 
AGV’s can perform various tasks, such as moving goods between assembly 
cells, warehouse inventory, inspection tasks, collaborating with humans for 
li� ing heavy parts, and so on. For each of these tasks it is important for the 
AGV to know where it is and which obstacles are on its path. A powerful 
technique for localisation is using Simultaneous Localisation And Mapping 
(SLAM), in which images from a video stream are analysed for features that 
can be tracked over time. The goal is to recognise scenes when returning to 
the same spot, by comparing the locations of these features in the images 
taken at an earlier occasion. This allows it to navigate more confi dently, 
since it has learned from the last time it visited this location. 
The traditional SLAM techniques however are not suffi  cient. Driving AGV’s, 
in an environment where humans work as well, requires safe behaviour,
therefore corner cases are very important. In some cases the AGV might 
think it is in another location due to dri�  in the SLAM algorithm or bad 
relocations, if the features were placed on objects that are dynamic and 
can move from frame to frame. In current state-of-the-art versions of these 
algorithms, there is no discrimination between dynamic and static objects.

Figure 2 - 3D poses of industrial parts, 
using standard 2d cameras and ai models 
trained using augmented cad rendered 
data, under extreme light / contrast 
changes
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watch video

Flanders Make proposed to improve these algorithms with domain know-
ledge and segment the images of the scene in order to detect objects 
and classify them as static or dynamic. Simulators that mimic industrial 
environments and generate realistic images are used to train the algorithm, 
with the time and cost saving benefi ts of correctly labelling the contents 
of the image. Furthermore, an additional benefi t is that these datasets with 
ground truth can be reused to train improved algorithms with no extra 
costs for generating new datasets.

AI-assisted operators 
Context
The cooperation between humans and cobots is on the rise in the indus-
trial landscape. The improved sensing capabilities of these cobots makes 
them a lot safer in operation together with humans. Their prices are also 
continuously decreasing, making them a lot more available for various tasks. 
At the same time, a lot of repetitive, easy tasks have already been fully 
automated by robots, the next obvious step is making the tasks that are
typically handled by humans more effi  cient with the help of cobots.
A cobot can, for example, li�  and hold a heavy object, while the human 
a� aches it with screws. Or a cobot can assist in certain assembly tasks that 
are harder for humans, like snapping together pieces that would require a 
lot of force for a human.
But, not every operator requires the same level of support and tasks can 
quickly shi�  in the modern assembly environment. This means that we 
need to add intelligent technologies to the assembly stations to deal with 
variability of situations and scenarios.

Situation-aware cobots
To further develop this, Flanders Make developed several AI techniques 
that can make the cobot more aware of the environment and the tasks 
to be executed, as well as create intuitive interfaces between human and 
cobot through speech and controls. Domain knowledge is utilised to
increase the safety and robustness of these AI techniques. By adding
relevant constraints, we can prevent unusual and unexpected output from 
the AI models, comparable to how guardrails prevent cars from straying
too far from the expected path. 
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The following example is used to illustrate this AI / domain knowledge 
paradigm within an assembly context.

In this example, a cobot is combined with a camera system, a voice recog-
nition system and a human operator. The camera system is equipped with 
AI models to handle image processing, in order to track the progress of the 
assembly task and to see what the human operator is currently doing.
Historical and current data is used to train this model, to improve the hand-
ling of variabilities. The speech recognition is also handled by AI models.
The outputs of these systems are then used to handle the next steps a� er 
the operator fi nished their task, like updating the digital work instructions 
(DWI, Figure 4) for the next task or triggering the cobot to perform its
next step. By having the system recognise what the operator is doing and 
responding to simple voice commands, the cobot and operator can
cooperate much more fl uently.

Figure 3. Sketch of AI models
constrained by a formalised domain 
knowledge (world model)

Figure 4. Example of digital work instruction (dwi) that guides operators
step by step to assemble a part
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Figure 5. (Left  ) An assembly station
with an operator, (right) a real-time
digital twin derived from and updated 
with world model data.

When having a human and a cobot operate in the same space, safety is 
obviously a priority. A� er all, a lot of robots still operate in safety cages to 
make sure humans stay at a safe distance during movements. That’s why 
we made a world model (Figure 5), based on prior domain knowledge, to 
formalise constraints and avoid unintended actions. For example, if the 
AI-based image processing model detects an object outside the safe area 
defi ned in the world model, then the system will prevent the cobot arm 
from moving to that area or trigger some kind of warning to the operator. 

Scheduling
Having these kinds of situation-aware cobots also unlocks a next step in 
the process. Manual assembly environments are o� en rather complex and 
diffi  cult to manage because the time it takes to assemble a product is highly 
dependent on the operator. Diff erences in skill level, experience and level 
of expertise lead to diff erences in performance. However, by off ering digital 
work instructions to operators that are tailored to their individual needs, 
their performance can be signifi cantly improved.
One of Flanders Make's industrial partners has developed an adaptive 
operator monitoring and work instruction system that adapts the work
instruction content to the experience level of the operator. Up until now, 
this system only worked when operators identifi ed themselves.
This identifi cation step o� en confl icts with privacy regulations and forms an 
added barrier in the acceptance of the system by the operators. 
To overcome this issue, Flanders Make developed an algorithm to estimate 
the operator’s skill level for a specifi c task, solely based on the available
detection data of the monitoring system. Because of the high-mix
low-volume nature of many assembly environments, we o� en lack suffi  cient 
execution data for a specifi c tasks. Therefore, assembly tasks are
decomposed into small micro tasks for which the skill and experience level 
is estimated. Skill level estimations for new tasks are then performed based 
on the available information on micro task level. This approach was
validated using the data of a work station in a sheltered workplace.
The neural network approach reaches an accuracy of over 85% compared 
to the operator identifi cation system as currently used. 
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Hybrid AI – building an intimate relation
Any moving object in a smart product or production system needs a
controller, designed by the experts in the fi eld of (classical) control
engineering. The control engineering community heavily relies upon struc-
tured, mostly state space, mathematical models of the system dynamics to 
design controllers. These models are built based on the engineer’s prior 
knowledge. Due to changes in the physical system extensively interacting 
with its environment, a controller based on such sometimes very detailed 
and costly to build models still relies on guesswork during its operation.
A lot of time and resources are being invested into making sure this guess-
work is suffi  cient to make the system safe and stable.
Similarly reinforcement learning is also a way of defi ning a control policy. 
It is a machine learning training method where a machine is rewarded for 
progress towards a desired goal, without telling it how to achieve this goal. 
It allows to learn in an unstructured manner, through trial and error, which 
off ers a high degree of freedom to learn and adapt. This can lead to
surprising solutions a human wouldn't even think of.

In short, while classical control focusses on maintaining safety, trust, and 
complex planning, in the face of model uncertainty; reinforcement learning 
focusses on its distinct counterpart: the iterative aspect of learning and 
gradual improvement by repeated interaction.
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Could we get the best out of both worlds? 
Recently, residual reinforcement learning was introduced for robot con-
trol: it trains a reinforcement learning controller residually on top of
an imperfect, traditional controller. The reinforcement learning algorithm
leverages the traditional controller as an initialisation to enable
data-effi  cient reinforcement learning for tasks where traditional reinfor-
cement learning is unmanageable, such as robotic insertion tasks where 
rewards are sparse. Starting from a suboptimal but adequate and robust 
controller, as o� en present in the motion control of industrial applications, 
we at Flanders Make have introduced the constrained residual
reinforcement learning architecture3 as shown in the fi gure below. It 
shows how the output of a conventional controller and actor are combined 
and scaled with the factor ‘βr’ to obtain actions ‘u(s)’ to drive a system. In 
view of human interaction, this scheme closely refl ects a traditional control 
loop and hence increases the explainability and transparency towards 
control experts (Human-Machine Interaction, Machine-Domain Knowledge 
Interaction).

Industrial Application
Present in many industrial applications, a slider crank provides 
reciprocating linear motion through a rotary motor in
combination with a bar linkage system. This system
exhibits highly nonlinear behaviour and is o� en plagued by 
unidentifi ed load disturbances and unknown interactions 
with the environment. This application is of direct rele-
vance in various industrial systems, like compressors, 
hydraulic pumps, weaving looms, and presses.
PID controllers are typically used in these
applications e.g. to keep a constant angular
reference of 60 r/min. However such PID
controllers suff er from suboptimality for
systems with varying loads or ambient
conditions, which requires retuning
the controller. 

3 T. Staessens, T. Lefebvre and G. Crevecoeur, 
"Adaptive Control of a Mechatronic System Using 
Constrained Residual Reinforcement Learning,"
in IEEE Transactions on Industrial Electronics,
vol. 69, no. 10, pp. 10447-10456, Oct. 2022,
doi: 10.1109/TIE.2022.3144565.
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The fi gure below shows the performance of a relative CRRL controller with 
βr = 0.2 compared to a benchmark PI controller. ωd denotes the desired 
and ω the actual crank angular velocity. The performance of a PI controller 
on the slider crank setup varies slightly from run to run despite lab con-
ditions with limited external disturbances. Therefore, each experiment 
starts with an initial run-in phase in which only the PI controller acts on the 
system to benchmark the results (the blue shaded region). This variability 
of the PI controller’s performance over diff erent runs is illustrative for the 
diffi  culties in optimally tuning a controller for all conditions. The error off set 
of the PI controller illustrates the inability of the PI controller to compen-
sate for the nonlinearities throughout one revolution which amounts to the 
mean error shown (blue/red line).

Learning performance - A� er the initial phase, the
residual controller is activated to learn. Early on in 
the training process, the RL method starts to explore 
causing a tremendous loss in performance and even 
possibly unsafe controller outputs. During the
exploration phase in CRRL this is strongly limited.
Operating performance - A� er the learning phase, 
the fi gure below on the le�  shows the average
performance improvement a� er convergence in terms 

of MAE (mean absolute error) and MSE (mean squared 
error). The right side shows a boxplot of the relative 
decrease in performance of all epochs a� er activating 
the residual controller where the reward was lower 
than the average PID reward. From these, we learned 
that the CRRL is is benefi cial to achieve a higher
optimality while maintaining safe operation. 



PRODUCT ION INTELLIGENCE 2022   | 25

AI to improve the bonding process
Context
From an ecological and economic perspective, companies are increasingly 
looking for ways to make products lighter and stronger. It is therefore 
important to fi nd the right combination of materials for a particular
application. This means that a lot of research is being done into the way in 
which these materials can be joined/bonded. Lately, robots and cobots are 
used more o� en to improve the quality of bonding joints and support ope-
rators during diffi  cult or repetitive assembly tasks. In order to achieve an 
optimal bond and bonding process, a lot of time and a� ention is invested 
in choosing the correct sett ings of these cobots and robots. For example, 
regular fi ne-tuning of the se� ings of the robot and the discharge unit is of 
great importance in order to achieve good glue bead quality. However, this 
is o� en time-consuming and based on trial & error, halting the production
process. In order to speed up this setup process, Flanders Make has 
developed a method to optimise a number of important parameters faster 
without disrupting the production process, using Hybrid AI. 

When looking for the optimal bonding technology for specifi c industrial 
applications, we can optimise various variables. These are not only the 
variables of the robot itself, but also the (climate) conditions of the bon-
ding, the materials used and the dosage of the adhesive. In research that 
Flanders Make has recently conducted, the robot speed, pre-pressure of 
the dosing unit, the amount of adhesive liquid per second and the distance 
between the nozzle and the work object were measured in its Joining & 
Materials Lab. The above shows how the quality of the bonded product is 
directly related to the production parameters realised by another product 
(the robot/cobot), more and more we observe this interrelationship and 
crossing of the product-production domain.
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Approach & impact
More specifi cally, we fi rst applied data-effi  cient 
data-driven models, namely the Gaussian process 
regression in the context of Bayesian optimisation.
This way, we were able to link the process control
se� ings with the product quality. Furthermore, to
optimise the process se� ings, a hybrid AI model was 
built based on the measurements and making use 
of expert knowledge with the routines of Flanders 
Make@UGent.
In addition, a calculation was made of the savings by 
minimising variation in the adhesive amount on the 
surface, the width of the adhesive bead and maximising 
the speed of the adhesive application.
By using a hybrid AI model on the two focus points
in this study, namely optimization of altitude and speed, 
the se� ing time of these parameters was reduced
from two days to just three hours.
In addition, a reduction in production costs was
achieved, this also led to a more stable and robust
production process.

Outlook
Starting from this work, we are further improving the 
methods, to make the tuning data-effi  cient for process 
control so that that it becomes even more viable in 
industry. We leverage not only data-effi  cient Bayesian 
optimisation methods that include experimental data 
but also digital twin information to construct quality 
predictive models. Next, re-tuning of process para-
meters is enforced by changing circumstances, like
diff erent operating conditions or welding processes, 
that can lead to inferior predictive capabilities if the 
quality predictive models are le�  unchanged.
We will realise this by means of transfer learning, which 
corresponds with hot-starting the learning/optimisation 
of one similar process condition from another,
and meta-learning.
This is an example of how we acknowledge the impor-
tance of controlling a production process in order to 
optimise the performance of the resulting product and 
wherein we bridge the product-production domain.
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AI for the design-operation continuum
Context
For the design of moving products and production systems, historically, 
companies relied on physics-based models that apprehend the behaviour 
of mechatronic systems and rely upon domain-specifi c electromechanical 
engineering knowledge. These models have a few physical parameters that 
relate directly to the actual physical system and can be expressed in static 
input-output expressions and dynamic partial and/or ordinary diff erential 
equations. These are mostly parametric (with inertia, damping, etc. parame-
ters). A typical way to align the models with real-world mechatronics is by 
identifying the physical parameter values such as backlash, damping, inertia 
and friction. 
During the operation of these products, data are being generated.
By using these data, without relying on physical priors, it is possible to fi nd 
structured data-driven models such as NARMAX, Wiener-Hammerstein 
and other data-driven models. Currently there is a rise in the use of AI
(or data-driven) models that increase the degrees of freedom to apprehend 
complex relationships in data. Supervised learning is typically used to train 
the many parameters of a data-driven model by relating input to output 
data. (Deep) neural networks have shown their ability to approximate
various physical dynamical systems exhibiting complex and nonlinear
behaviours. In manufacturing, data-driven methods have demonstrated 
their value at the supervisory level since they adhere well to the abstract 
level. However, closer to the physical processes, signifi cant predictive 
errors may however appear outside their training data. 
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Approach 
In order to combine the best of both worlds hybrid modelling approaches 
that combine physics-based with data-driven models have been suggested. 
In such models, physical equations are combined with black-box neural 
networks. The neural network mappings assist in compensating for predic-
tion discrepancies in the physics-based model. Flanders Make has been 
working with several types of hybrid models ranging from Physics Inspired 
Neural Networks (PINNs) up to ‘multiplicative’ hybrid models developed 
by Flanders Make (see fi gure below3). Herein, we closely combine ordinary 
diff erential equations and diff erential-algebraic system of equations (ODEs/
DAEs) with neural networks. We refer to it as multiplicative because instead 
of adding a residual data-driven model output to the physics-based model 
to correct the la� er, the physical states are connected to neural network 
nodes, the physics and data parameters are trained.
The neural network is then not used to merely adapt some parameters of 
the physics-based model, instead it is adding unmodelled dynamic behavi-
our to the physics-based model. Such unmodelled behaviour could be eit-
her directly linked to the machine such as e.g. friction within a mechatronic 
transmission or to a process behaviour that cannot be directly measured 
or modelled such as e.g. slip or stretch of a foil in a foil winding machine. 
Hence, as these data add new aspects to an existing model and as such
improves the model, these hybrid models function as one of the tools to 
build digital twins. Furthermore, at Flanders Make, we use these hybrid
models as one of the tools to realise a design-operation continuum:
(physical) design models are used during operation and data from operation 
are used to build be� er models that are in turn used in the design.

3 W. De Groote, E. Kikken, E. Hostens,
S. Van Hoecke and G. Crevecoeur,
"Neural Network Augmented Physics Models for 
Systems With Partially Unknown Dynamics:
Application to Slider–Crank Mechanism,"
in IEEE/ASME Transactions on Mechatronics,
vol. 27, no. 1, pp. 103-114, Feb. 2022, doi: 10.1109/
TMECH.2021.3058536.
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Industrial application
To illustrate this, we consider a cam-follower mechanism which is used in 
many applications to translate a rotary motion into a linear displacement. 
Designing such a cam-follower, e.g. to derive the shape, mass, … for a large 
range of operating conditions such as speed, loads, … ensuring the follower 
trajectory is such that it does not jump is challenging. The la� er is due to 
e.g. unknown friction, etc. and the fact that the e.g. the height of a follower 
jump does not depend on the momentaneous rotational measurements but 
relies on the energy build-up created when contact was still assured.

In this case, Flanders Make defi ned a hybrid prediction model, whereby 
the trajectory of the detachment variable was learned by an LSTM neu-
ral network model that receives a combination of direct measurements, 
physics inspired features, and system properties. We then further studied 
the relative importance of the inclusion of physics-inspired expert know-
ledge using a DeepSHAP (Deep Shapley Additive Explanations method). 
We have shown that, only thanks to including physics-inspired features, the
generalisation capabilities of the model drastically increased; both over the 
operating conditions of the cam follower as well as its shape; making the 
resulting model ideal for further designs realising the design-operation 
continuum vision.



30 | FLANDERS MAKE

Major product∞ion intelligence-related
research conducted by Flanders Make:
1. Product-ion Data related research
2. Research into AI algorithms selection/classifi cation for guaranteed

performance
3. Research into Domain knowledge capturing & integration
4. Research into Explainability loop // Hardcoding of domain knowledge

in AI algorithm structure // physics based IO constraining //
5. Research into Robustness loop and constraints defi nition for higher

effi  ciency in training networks and exploitation
6. Research into Mutual learning / (partial yet smart) learning (expert

knowledge, family features) / architectural design of combinatory
AI algorithms

7. Research into PI for impact creation and enabling business value //
deployability (embedded, edge, real time, ..)
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Flanders Make consists of three co-creation centres, 
the Flemish drone federation EUKA  
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